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Potential second-life applications 

Highlights  
There is a wide variety of potential second-life 

applications  
 Potential second-life batteries are not only 

stationary but also mobile 

Potential second-life applications 

41 mobile applications 
(e.g. short-range EVs, industrial 

vehicles, micro-mobility, consumer 
electronics) 

SOURCE: International cargo bike festival 

7 semi-stationary applications 
(e.g. power-stations, power 
generators, mobile chargers) 

SOURCE: FreeWire Technologies SOURCE: Instaboost 

17 stationary applications 
(e.g. residential, commercial and 
industrial energy storage systems 

(ESS)) 

SOURCE: GenixGreen SOURCE: Siemens 

What are the most promising second-life 
applications? 
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Most promising second-life applications 

Highlights 
 The applications’ assessment was conducted considering technical, economic and legal aspects 
 Two applications, with different degrees of mobility, were found to be the most promising  

 

Most promising second-life applications 

AGV 

SOURCE: ©malp - stock.adobe.com 

SOURCE: KIVNON 

Renewable firming 
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Second-life applications: associated risks 

Main takeaways 

•There is a wide variety of potential second-
life applications 

• Second-life applications are not only 
stationary but also mobile 

•Depending on the second-life application, 
the battery will experience different loads 

 

As for first life, safety must be ensured 
throughout second life 

Safety is strongly influenced to the applied 
loads  

 
 

 

 

What loads are experienced from the battery? 

SOURCE: Energy-Storage.News 
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THERMAL LOADS 
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What are the main risks related to each load? 
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Electrical load 

 

Overcharge 
 Gas and heat generation1-4 
 Active material/electrolyte decomposition1-4 
 Lithium plating1-5 

ELECTRICAL LOAD  

SOURCE: Epec Engineered 

Technologies 
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Electrical load 

  

Overcharge 
 Gas and heat generation1-4 
 Active material/electrolyte decomposition1-4 
 Lithium plating1-5 

Overdischarge 
 Gas and heat generation2,3 
 Irreversible solid-state amorphizazion3 
 Dissolution of Cu current collector1-3 

ELECTRICAL LOAD 

SOURCE: Guo et al. 

(2016) 
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Electrical load 

 

Overcharge 
 Gas and heat generation1-4 
 Active material/electrolyte decomposition1-4 
 Lithium plating1-5 

Overdischarge 
 Gas and heat generation2,3 
 Irreversible solid-state amorphizazion3 
 Dissolution of Cu current collector1-3 

High C-rate 
 Heat generation1-6 
 Lithium plating1,6-8 
 Swelling8,9 

ELECTRICAL LOAD  

SOURCE: Michelini et al. 

(2023) 
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Electrical load 

 Considerations 

•Certain risks are more critical. Examples: 
–Swelling: under proper mechanical boundary 

conditions is not critical 

–Lithium plating: may be highly critical, 
especially in second-life use due to prior plated 
lithium 

•The Battery Management System (BMS) 
is key for preventing the reach of critical 
voltage values 

•Controlling the burst of current flowing 
through the battery pack with the BMS is 
more challenging 

Overcharge 
 Gas and heat generation1-4 
 Active material/electrolyte decomposition1-4 
 Lithium plating1-5 

Overdischarge 
 Gas and heat generation2,3 
 Irreversible solid-state amorphizazion3 
 Dissolution of Cu current collector1-3 

High C-rate 
 Heat generation1-6 
 Lithium plating1,6-8 
 Swelling8,9 

ELECTRICAL LOAD 
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Thermal load 

 

High temperature 
 Decomposition of Solid Electrolyte Interphase 

(SEI)1,2,7,10 
 Melting of the separator1,2 
 Decomposition of the active material1,2,7 
 Exothermic reactions1,2,7 

THERMAL LOAD  

SOURCE: Sheng et al. 

(2017) 
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Thermal load 

 

High temperature 
 Decomposition of Solid Electrolyte Interphase 

(SEI)1,2,7,10 
 Melting of the separator1,2 
 Decomposition of the active material1,2,7 
 Exothermic reactions1,2,7 

Low temperature 
 Lithium plating1,2,7,11 
 Cathode break down2 

THERMAL LOAD  

SOURCE: 

QuantumScape 
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Thermal load 

 Considerations 

• An optimal temperature range is designated for 
the cell's operation 

• The Battery Thermal Management System 
(BTMS) helps to maintains the battery within this 
optimal temperature window 

• The degree of mobility affects the likelihood of 
encountering critical temperatures 

–Stationary applications: operated in controlled 
environments, minimizing critical temperature 
risks 

–Mobile applications: Outdoor operation results 
in diverse temperature exposure, varying with 
time, season, and location 

High temperature 
 Decomposition of Solid Electrolyte Interphase 

(SEI)1,2,7,10 
 Melting of the separator1,2 
 Decomposition of the active material1,2,7 
 Exothermic reactions1,2,7 

Low temperature 
 Lithium plating1,2,7,11 
 Cathode break down2 

THERMAL LOAD 
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Mechanical load 

 

Mechanical shock 
 Cell deformation12,13,14 
 Gas generation15 
 Internal short circuit13-15 

MECHANICAL LOAD  

SOURCE: Zhu et al. 

(2020) 
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Mechanical load 

 

Mechanical shock 
 Cell deformation12,13,14 
 Gas generation15 
 Internal short circuit13-15 

Indentation 
 Ripped pouch foil 
 Gas generation15 
 Internal short circuit13-15 

MECHANICAL LOAD  

SOURCE: Zhu et al. 

(2020) 
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Mechanical load 

 

Mechanical shock 
 Cell deformation12,13,14 
 Gas generation15 
 Internal short circuit13-15 

Indentation 
 Ripped pouch foil 
 Gas generation15 
 Internal short circuit13-15 

Vibrations 
 No effect (on pouch cell)16 

 
 

MECHANICAL LOAD  
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Mechanical load 

 Considerations 

•Preventing mechanical loads on the cell 
is challenging, the housing design can 
mitigate damage 

•Vibrations affect cylindrical cells 
negatively, while they have no impact on 
pouch cells 

•The degree of mobility influences load 
criticality 
–Mobile applications are more prone to be 

exposed to mechanical loads than stationary 
applications 

Mechanical shock 
 Cell deformation12,13,14 
 Gas generation15 
 Internal short circuit13-15 

Indentation 
 Ripped pouch foil 
 Gas generation15 
 Internal short circuit13-15 

Vibrations 
 No effect (on pouch cell)16 

 
 

MECHANICAL LOAD 
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Risk prioritization 

• The risks associated with the loads are not equally 
critical 

• A risk prioritization is required 

 

 

 

 

 

 

 Failure Mode and Effects Analysis (FMEA) 

 

Due to the great difference in loads experienced by 
mobile and stationary applications, the two cases 
were analyzed separately 

 

 

 

 

 

 

 

Risk assessment methodology 

Direct 
correlation 

cause-effect 

Absolute 
number as 
output for 

prioritization 

Known 
method: 

already used 
in the field 
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FMEA Risk Assessment 

Load  Risk Effect Severity 
Mobile Stationary 

Probability RPN Probability RPN 

Electrical 

Overcharge 

Generation of gasses and heat 4 1 4 1 4 

Decomposition of the positive active material and electrolyte 7 1 7 1 7 

Lithium plating 7 1 7 1 7 

Overdischarge 

Generation of gasses and heat 4 1 4 1 4 

Irreversible solid-state amorphization 4 1 4 1 4 

Dissolution of Cu current collector 7 1 7 1 7 

High C-rate 

Heat generation 7 7 49 4 28 

Lithium plating 7 4 28 4 28 

Swelling 1 7 7 7 7 

Th
erm

al 

High temperature 

Decomposition of SEI 4 4 16 1 4 

Melting of the separator 7 1 7 1 7 

Decomposition of the positive active material 7 1 7 1 7 

Exothermic reactions 10 1 10 1 10 

Low temperature 
Lithium plating 7 4 28 1 7 

Cathode break down 10 1 10 1 10 

M
ech

an
ical 

Mechanical shock 

Cell deformation 4 7 28 0 0 

Gas generation 4 7 28 0 0 

Internal short circuit 10 4 40 0 0 

Indentation 

Ripped pouch foil 7 7 49 0 0 

Gas generation 4 7 28 0 0 

Internal short circuit 10 7 70 0 0 

Vibrations No effect (on pouch cells) 0 10 0 0 0 
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Conclusion 

Final remarks 

• Second-life is a promising opportunity 

–There is a wide variety of potential second-life 
applications 

• Every opportunity comes with its challenges 

–Safety is an important issue to be addressed 

• Safety critical scenario are correlated with the 
applied loads 

–Some loads have more critical associated risks, 
e.g., high C-rates, mechanical shock and 
indentation (for mobile applications only) 

• An application-specific load assessment is key for 
a successful second-life transition 
 

 

SOURCE: Firehouse Magazine 

Next steps 

▪ The critical load cases of promising 
applications (e.g. AGVs and ESSs for renewable 
firming purposes) will be studied in more 
detail in future investigations 
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Further relevant projects at Vehicle Safety Institute – Graz University of Technology 

BioLIB 

 

 

 

 

 

 

 

 

Biobased Materials in Batteryhousings - 
considering Design for Disassembly 

 

 

Project budget: €1.65M 

Project duration: 3 years 

Project end: 31 March 2024 
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Hardware and software concepts to identify 
electrochemical processes in the battery 

and track their evolution over time 

 

Project budget: €4.90M 

Project duration: 3 years 

Project end: 30 April 2026 

BattBox 

 

 

 

 

 

 

 

 

Strategies for disassembling of batteries, 
aiming for a direct mechanical separation 

 

 

Project budget: €1.96M 

Project duration: 3 years 

Project end: 31 December 2025 
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